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This talk

Project goal: Predict tumor Microsatellite Instability from Whole Slide
Images using Contrastive Learning and Multiple Instance Learning.

Whole Slide Image (WSI): A high-resolution digital scan of an entire
microscope slide.

Let
X = {xi}N

i=1: A set of N unlabeled patches extracted from a WSI.
Y = {yj}K

j=1: The set of K true WSI labels corresponding to
different MSI statuses in a WSI.
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Our approach

Challenges in Direct WSI Classification:

Substantial computational resources due to high dimensionality.
Tiny details determine the classification of the HUGE image.

Our Approach:
1 Use Contrastive Learning to

learn robust feature
representations of patches.

2 Perform classification using
feature vectors extracted from
patches with Multiple Instance
Learning.
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1. Representation Learning with Contrastive Learning

Data Pair Creation:
Data pairs are generated for self-supervised representation learning.
These pairs are created by applying various augmentations to the
original image, resulting in two transformed versions, X̃

a
and X̃

b
.

The following augmentations are applied:

Random cropping
Color jittering
Grayscale transformation

Horizontal flipping
Normalization
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1. Representation Learning with Contrastive Learning

Feature Extraction:
- Features are extracted using a shared ResNet f (·) encoder.

- Resulting in feature vectors ha = f (X̃a) and hb = f (X̃b).
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1. Representation Learning with Contrastive Learning

Projections: Features are projected into row and column spaces
using two separate MultiLayer Perceptions (MLPs) gI(·) and gC (·).

- Instance space: Za = gI(ha), Zb = gI(hb).
- Cluster space: Pa = gC (ha), Pb = gC (hb).
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1. Representation Learning with Contrastive Learning

Instance-Level Loss

LI = −
N∑

i=1
log exp(s(za

i , zb
i )/τI)∑N

j=1 exp(s(za
i , za

j )/τI) + exp(s(za
i , zb

j )/τI)
(1)

where s(u, v) = u·v
∥u∥∥v∥ is the cosine similarity. τI and τC are the

instance-level and cluster-level temperature parameters (scaling factor
for cosine similarity).
Cluster-Level Loss

LC = −
K∑

i=1
log exp(s(ya

i , yb
i )/τC )∑K

j=1 exp(s(ya
i , ya

j )/τC ) + exp(s(ya
i , yb

j )/τC )
(2)

Overall Loss Function
L = LI + LC (3)
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1. Representation Learning with Contrastive Learning

Overall Workflow:
Apply augmentations to create pairs of transformed patches.
Use a shared ResNet encoder to extract feature vectors.
Project feature vectors into instance and cluster spaces.
Optimize the model to minimize the overall loss function.
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2. Multiple Instance Learning

Multiple Instance Learning (MIL)
MIL is a form of weakly supervised learning.
Suited for scenarios with uncertainty in labeling individual data
points {x1, . . . , xK }.
Labels Y ∈ {0, 1} are available at a bag level but individual labels
instances {y1, . . . , yK } are unknown.

Context: Whole Slide Image (WSI) Analysis
Treats each WSI as a collection of instances (patches).
Effective due to the complexities and expansiveness of WSIs.
Focus on combined characteristics of patches.

R. Nap, M. Aburidi, and R. Marcia EMBC 2024 July 15-19, 2024 9 / 19



2. Multiple Instance Learning

Multiple Instance Learning (MIL)
MIL is a form of weakly supervised learning.
Suited for scenarios with uncertainty in labeling individual data
points {x1, . . . , xK }.
Labels Y ∈ {0, 1} are available at a bag level but individual labels
instances {y1, . . . , yK } are unknown.

Context: Whole Slide Image (WSI) Analysis
Treats each WSI as a collection of instances (patches).
Effective due to the complexities and expansiveness of WSIs.
Focus on combined characteristics of patches.

R. Nap, M. Aburidi, and R. Marcia EMBC 2024 July 15-19, 2024 9 / 19



2. Multiple Instance Learning

MIL classifiers utilize a trainable attention mechanism to concentrate
on the most informative instances within each bag.

This process
involves an MLP attention network equipped with parameters W, V,
and U to allocate a weight ak for each embedded instance zk .

ak = exp{W⊤(tanh(Vzk) ⊙ sigm(Uzk))}∑N
j=1 exp{W⊤(tanh(Vzj) ⊙ sigm(Uzj))}

(4)

where sigm(·) is the sigmoid function, and ⊙ is the element-wise
product, N is the number of the embedded instance vectors in a bag.

µ = 1
N

N∑
k=1

akzk (5)

The overall bag representation is computed by the weighted mean µ of
these instance embeddings as shown above.
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2. Multiple Instance Learning
MIL Loss + Regularizer:

Support Vector Machine (SVM) Loss:

For each bag xj with label yj , define ξi = max(0, 1 − ζi × yj), where:
ζi - The predicted logit for instance i within the bag.
ξi - The hinge loss term for instance i .
δ - Smoothness parameter ensuring differentiability.

Smooth SVM Loss for bag xj is defined as:

l(yj , f (xj), δ) =
{

1
N

∑N
i=1

1
2δ ξ2

i if ξi ≤ δ
1
N

∑N
i=1(ξi − δ

2 ) otherwise

Kullback Leibler (KL) Divergence Regularization:
Acts as a regularizer applied with SVM Loss.

M - Total number of bags, N - Number of instances in bag j.
Aji - Attention weight of instance i in bag j, Uji - Uniform distribution value for instance i in bag j.

Given by:

KL Divergence = 1
M

M∑
j=1

N∑
i=1

Aji log
(

Aji
Uji

)
We found that promoting uniform attention within each bag helped
prevent overfitting to a few negative instances.
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2. Multiple Instance Learning

Overall Workflow:
Extract patches from WSIs.
Learn instance-level features using Stage 1 (CCNet).
Aggregate instance features to form a bag-level representation.
Classify the bag-level representation to predict MSI status.
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3. Numerical results: SimCLR
Contrary to our feature extractor (CCNet), SimCLR only utilizes an
instance-level projection head for training.
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3. Numerical results: Datasets
Dataset:

We utilize two image datasets obtained from The Cancer Genome
Atlas (TCGA) cohort:

The Colorectal Cancer (CRC) dataset was utilized for
comparative analysis.
The Stomach Adenocarcinoma (STAD) dataset was employed to
externally validate our model.

Evaluation:
We partitioned the training data into 5-folds for cross-validation
and reserved the testing split for final validation.
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3. Numerical results: Evaluation metrics

Area Under the Receiver Operating Characteristic (AUROC)

F1 Score (F1)

Both measures values between 0 and 1 with higher values indicating
better results.
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3. Numerical results: CRC Dataset

To ensure a comprehensive evaluation,
we compute the mean and standard
deviation of AUROC and F1 scores
across five folds.

We compare the performance of SimCLR
with our CCNet extractor.

We evaluate the efficacy of SVM loss
compared to the conventional Negative
Log-Likelihood (NLL) loss.

We employ two attention-based MIL
classifiers, DeepMIL and VarMIL, and
assess the performance of each model
configuration.
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3. Numerical results: Transfer Learning

Motivation for Transfer Learning:
In medical imaging, labeled data scarcity limits model training.
Transfer learning leverages pre-trained models to enhance performance on related tasks.

Experiment:
We explore the performance of ResNet18 pretrained on ImageNet, SimCLR pre-trained on
STAD and CCNet pre-trained on STAD.
We utilize these pre-trained extractors to generate feature vectors for input for MIL
Classification.

Key Findings:
CCNet, achieved better AUROC and F1 scores than SimCLR, demonstrating effective
feature extraction.
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4. Summary

1 Proposed a framework for predicting tumor Microsatellite
Instability from Whole Slide Images.

2 Model incorporates Contrastive Learning and Multiple Instance
Learning.

3 Conducted comparisons to state-of-the-art models.
4 Conducted evaluation on two real-world histopathology cancers

datasets: Colorectal (CRC) and Stomach (STAD) cancers.
5 Results from our proposed model improve upon existing methods.
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Thank You!

R. Nap, M. Aburidi, and R. Marcia EMBC 2024 July 15-19, 2024 19 / 19


	Introduction
	Contrastive Learning
	Multiple Instance Learning
	Numerical Results
	Summary

