Contrastive Pre-Training and Multiple Instance Learning for Predicting Tumor Microsatellite Instability

Ronald Nap, Mohammed Aburidi, and Roummel Marcia

University of California, Merced, CA, USA

July 15-19, 2024

EMBC 2024

This talk

Project goal: Predict tumor Microsatellite Instability from Whole Slide Images using Contrastive Learning and Multiple Instance Learning.

Whole Slide Image (WSI): A high-resolution digital scan of an entire microscope slide.

This talk

Project goal: Predict tumor Microsatellite Instability from Whole Slide Images using Contrastive Learning and Multiple Instance Learning.

Whole Slide Image (WSI): A high-resolution digital scan of an entire microscope slide.

Let

- $\mathbf{X} = \{x_i\}_{i=1}^N$: A set of *N* unlabeled patches extracted from a WSI.
- Y = {y_j}^K_{j=1}: The set of K true WSI labels corresponding to different MSI statuses in a WSI.

Challenges in Direct WSI Classification:

Challenges in Direct WSI Classification:

- Substantial computational resources due to high dimensionality.
- Tiny details determine the classification of the HUGE image.

Our Approach:

Challenges in Direct WSI Classification:

- Substantial computational resources due to high dimensionality.
- **Tiny** details determine the classification of the **HUGE** image.

Our Approach:

 Use Contrastive Learning to learn robust feature representations of patches.

Challenges in Direct WSI Classification:

- Substantial computational resources due to high dimensionality.
- **Tiny** details determine the classification of the **HUGE** image.

Our Approach:

- Use Contrastive Learning to learn robust feature representations of patches.
- Perform classification using feature vectors extracted from patches with Multiple Instance Learning.

Challenges in Direct WSI Classification:

- Substantial computational resources due to high dimensionality.
- Tiny details determine the classification of the HUGE image.

Our Approach:

- Use Contrastive Learning to learn robust feature representations of patches.
- Perform classification using feature vectors extracted from patches with Multiple Instance Learning.

Data Pair Creation:

Data pairs are generated for self-supervised representation learning. These pairs are created by applying various augmentations to the original image, resulting in two transformed versions, \tilde{X}^{a} and \tilde{X}^{b} .

Data Pair Creation:

Data pairs are generated for self-supervised representation learning. These pairs are created by applying various augmentations to the original image, resulting in two transformed versions, \tilde{X}^{a} and \tilde{X}^{b} .

The following augmentations are applied:

- Random cropping
- Color jittering
- Grayscale transformation

- Horizontal flipping
- Normalization

• Feature Extraction:

- Features are extracted using a shared ResNet $f(\cdot)$ encoder.

• Feature Extraction:

- Features are extracted using a shared ResNet $f(\cdot)$ encoder.
- Resulting in feature vectors $h^a = f(\tilde{\mathbf{X}}^a)$ and $h^b = f(\tilde{\mathbf{X}}^b)$.

Feature Extraction:

- Features are extracted using a shared ResNet $f(\cdot)$ encoder.
- Resulting in feature vectors $h^a = f(\tilde{\mathbf{X}}^a)$ and $h^b = f(\tilde{\mathbf{X}}^b)$.

 Projections: Features are projected into row and column spaces using two separate MultiLayer Perceptions (MLPs) g_I(·) and g_C(·).

- Projections: Features are projected into row and column spaces using two separate MultiLayer Perceptions (MLPs) g_I(·) and g_C(·).
 - Instance space: $\mathbf{Z}^a = g_l(h^a)$, $\mathbf{Z}^b = g_l(h^b)$.
 - Cluster space: $\mathbf{P}^a = g_C(h^a)$, $\mathbf{P}^b = g_C(h^b)$.

- Projections: Features are projected into row and column spaces using two separate MultiLayer Perceptions (MLPs) g_I(·) and g_C(·).
 - Instance space: $\mathbf{Z}^a = g_I(h^a), \, \mathbf{Z}^b = g_I(h^b).$
 - Cluster space: $\mathbf{P}^a = g_C(h^a), \, \mathbf{P}^b = g_C(h^b).$

Instance-Level Loss

Instance-Level Loss

$$\mathcal{L}_{I} = -\sum_{i=1}^{N} \log \frac{\exp(s(z_{i}^{a}, z_{i}^{b})/\tau_{I})}{\sum_{j=1}^{N} \exp(s(z_{i}^{a}, z_{j}^{a})/\tau_{I}) + \exp(s(z_{i}^{a}, z_{j}^{b})/\tau_{I})}$$
(1)

where $s(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$ is the cosine similarity.

Instance-Level Loss

$$\mathcal{L}_{I} = -\sum_{i=1}^{N} \log \frac{\exp(s(z_{i}^{a}, z_{i}^{b})/\tau_{I})}{\sum_{j=1}^{N} \exp(s(z_{i}^{a}, z_{j}^{a})/\tau_{I}) + \exp(s(z_{i}^{a}, z_{j}^{b})/\tau_{I})}$$
(1)

where $s(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$ is the cosine similarity. τ_I and τ_C are the instance-level and cluster-level temperature parameters (scaling factor for cosine similarity).

Cluster-Level Loss

Instance-Level Loss

$$\mathcal{L}_{I} = -\sum_{i=1}^{N} \log \frac{\exp(s(z_{i}^{a}, z_{i}^{b})/\tau_{I})}{\sum_{j=1}^{N} \exp(s(z_{i}^{a}, z_{j}^{a})/\tau_{I}) + \exp(s(z_{i}^{a}, z_{j}^{b})/\tau_{I})}$$
(1)

where $s(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$ is the cosine similarity. τ_I and τ_C are the instance-level and cluster-level temperature parameters (scaling factor for cosine similarity).

Cluster-Level Loss

$$\mathcal{L}_{C} = -\sum_{i=1}^{K} \log \frac{\exp(s(y_{i}^{a}, y_{i}^{b})/\tau_{C})}{\sum_{j=1}^{K} \exp(s(y_{i}^{a}, y_{j}^{a})/\tau_{C}) + \exp(s(y_{i}^{a}, y_{j}^{b})/\tau_{C})}$$
(2)

Instance-Level Loss

$$\mathcal{L}_{I} = -\sum_{i=1}^{N} \log \frac{\exp(s(z_{i}^{a}, z_{i}^{b})/\tau_{I})}{\sum_{j=1}^{N} \exp(s(z_{i}^{a}, z_{j}^{a})/\tau_{I}) + \exp(s(z_{i}^{a}, z_{j}^{b})/\tau_{I})}$$
(1)

where $s(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$ is the cosine similarity. τ_I and τ_C are the instance-level and cluster-level temperature parameters (scaling factor for cosine similarity).

Cluster-Level Loss

$$\mathcal{L}_{C} = -\sum_{i=1}^{K} \log \frac{\exp(s(y_{i}^{a}, y_{i}^{b})/\tau_{C})}{\sum_{j=1}^{K} \exp(s(y_{i}^{a}, y_{j}^{a})/\tau_{C}) + \exp(s(y_{i}^{a}, y_{j}^{b})/\tau_{C})}$$
(2)

Overall Loss Function

$$\mathcal{L} = \mathcal{L}_I + \mathcal{L}_C \tag{3}$$

Overall Workflow:

- Apply augmentations to create pairs of transformed patches.
- Use a shared ResNet encoder to extract feature vectors.
- Project feature vectors into instance and cluster spaces.
- Optimize the model to minimize the overall loss function.

Overall Workflow:

- Apply augmentations to create pairs of transformed patches.
- Use a shared ResNet encoder to extract feature vectors.
- Project feature vectors into instance and cluster spaces.
- Optimize the model to minimize the overall loss function.

Stage 1: Contrastive Clustering Network (CCNet)

Multiple Instance Learning (MIL)

- MIL is a form of weakly supervised learning.
- Suited for scenarios with **uncertainty in labeling** individual data points {*x*₁,..., *x*_K}.
- Labels Y ∈ {0,1} are available at a bag level but individual labels instances {y₁,..., y_K} are unknown.

Multiple Instance Learning (MIL)

- MIL is a form of weakly supervised learning.
- Suited for scenarios with **uncertainty in labeling** individual data points {*x*₁,...,*x*_K}.
- Labels Y ∈ {0,1} are available at a bag level but individual labels instances {y₁,..., y_K} are unknown.

Context: Whole Slide Image (WSI) Analysis

- Treats each WSI as a collection of instances (patches).
- Effective due to the complexities and expansiveness of WSIs.
- Focus on combined characteristics of patches.

MIL classifiers utilize a trainable attention mechanism to concentrate on the most informative instances within each bag.

MIL classifiers utilize a trainable attention mechanism to concentrate on the most informative instances within each bag. This process involves an MLP attention network equipped with parameters **W**, **V**, and **U** to allocate a weight a_k for each embedded instance z_k .

MIL classifiers utilize a trainable attention mechanism to concentrate on the most informative instances within each bag. This process involves an MLP attention network equipped with parameters W, V, and U to allocate a weight a_k for each embedded instance z_k .

$$a_{k} = \frac{\exp\{\mathbf{W}^{\top}(\tanh(\mathbf{V}\mathbf{z}_{k}) \odot \operatorname{sigm}(\mathbf{U}\mathbf{z}_{k}))\}}{\sum_{j=1}^{N} \exp\{\mathbf{W}^{\top}(\tanh(\mathbf{V}\mathbf{z}_{j}) \odot \operatorname{sigm}(\mathbf{U}\mathbf{z}_{j}))\}}$$
(4)

where sigm(\cdot) is the sigmoid function, and \odot is the element-wise product, *N* is the number of the embedded instance vectors in a bag.

MIL classifiers utilize a trainable attention mechanism to concentrate on the most informative instances within each bag. This process involves an MLP attention network equipped with parameters W, V, and U to allocate a weight a_k for each embedded instance z_k .

$$a_{k} = \frac{\exp\{\mathbf{W}^{\top}(\tanh(\mathbf{V}\mathbf{z}_{k}) \odot \operatorname{sigm}(\mathbf{U}\mathbf{z}_{k}))\}}{\sum_{j=1}^{N} \exp\{\mathbf{W}^{\top}(\tanh(\mathbf{V}\mathbf{z}_{j}) \odot \operatorname{sigm}(\mathbf{U}\mathbf{z}_{j}))\}}$$
(4)

where sigm(\cdot) is the sigmoid function, and \odot is the element-wise product, *N* is the number of the embedded instance vectors in a bag.

$$\mu = \frac{1}{N} \sum_{k=1}^{N} a_k \mathbf{z}_k \tag{5}$$

The overall bag representation is computed by the weighted mean μ of these instance embeddings as shown above.

MIL Loss + Regularizer:

• Support Vector Machine (SVM) Loss:

MIL Loss + Regularizer:

• Support Vector Machine (SVM) Loss:

MIL Loss + Regularizer:

• Support Vector Machine (SVM) Loss:

- For each bag x_j with label y_j , define $\xi_i = \max(0, 1 \zeta_i \times y_j)$, where:
 - *ζ_i* The predicted logit for instance *i* within the bag.
 - ξ_i The hinge loss term for instance *i*.

MIL Loss + Regularizer:

- Support Vector Machine (SVM) Loss:
 - For each bag x_j with label y_j , define $\xi_i = \max(0, 1 \zeta_i \times y_j)$, where:

 - ξ_i The hinge loss term for instance *i*.
 - δ Smoothness parameter ensuring differentiability.
 - Smooth SVM Loss for bag x_j is defined as:

$$I(y_j, f(x_j), \delta) = \begin{cases} rac{1}{N} \sum_{i=1}^{N} rac{1}{2\delta} \xi_i^2 & \text{if } \xi_i \leq \delta \\ rac{1}{N} \sum_{i=1}^{N} (\xi_i - rac{\delta}{2}) & \text{otherwise} \end{cases}$$

MIL Loss + Regularizer:

- Support Vector Machine (SVM) Loss:
 - For each bag x_j with label y_j , define $\xi_i = \max(0, 1 \zeta_i \times y_j)$, where:

 - ξ_i The hinge loss term for instance *i*.
 - δ Smoothness parameter ensuring differentiability.
 - Smooth SVM Loss for bag x_j is defined as:

$$I(y_j, f(x_j), \delta) = \begin{cases} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2\delta} \xi_i^2 & \text{if } \xi_i \le \delta \\ \frac{1}{N} \sum_{i=1}^{N} (\xi_i - \frac{\delta}{2}) & \text{otherwise} \end{cases}$$

• Kullback Leibler (KL) Divergence Regularization:

Acts as a regularizer applied with SVM Loss.

MIL Loss + Regularizer:

- Support Vector Machine (SVM) Loss:
 - For each bag x_j with label y_j , define $\xi_i = \max(0, 1 \zeta_i \times y_j)$, where:

 - ξ_i The hinge loss term for instance *i*.
 - δ Smoothness parameter ensuring differentiability.
 - Smooth SVM Loss for bag x_j is defined as:

$$I(y_j, f(x_j), \delta) = \begin{cases} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2\delta} \xi_i^2 & \text{if } \xi_i \le \delta \\ \frac{1}{N} \sum_{i=1}^{N} (\xi_i - \frac{\delta}{2}) & \text{otherwise} \end{cases}$$

• Kullback Leibler (KL) Divergence Regularization:

Acts as a regularizer applied with SVM Loss.

- M Total number of bags, N Number of instances in bag j.
- A_{ji} Attention weight of instance i in bag j, U_{ji} Uniform distribution value for instance i in bag j.

MIL Loss + Regularizer:

• Support Vector Machine (SVM) Loss:

- For each bag x_j with label y_j , define $\xi_i = \max(0, 1 \zeta_i \times y_j)$, where:
 - *ζ_i* The predicted logit for instance *i* within the bag.
 - ξ_i The hinge loss term for instance *i*.
 - δ Smoothness parameter ensuring differentiability.
- Smooth SVM Loss for bag x_j is defined as:

$$I(y_j, f(x_j), \delta) = \begin{cases} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2\delta} \xi_i^2 & \text{if } \xi_i \le \delta \\ \frac{1}{N} \sum_{i=1}^{N} (\xi_i - \frac{\delta}{2}) & \text{otherwise} \end{cases}$$

• Kullback Leibler (KL) Divergence Regularization:

Acts as a regularizer applied with SVM Loss.

M - Total number of bags, N - Number of instances in bag j.

A_{ji} - Attention weight of instance i in bag j, U_{ji} - Uniform distribution value for instance i in bag j.

• Given by:

$$ext{KL Divergence} = rac{1}{M} \sum_{j=1}^M \sum_{i=1}^N A_{ji} \log\left(rac{A_{ji}}{U_{ji}}
ight)$$

MIL Loss + Regularizer:

- Support Vector Machine (SVM) Loss:
 - For each bag x_j with label y_j , define $\xi_i = \max(0, 1 \zeta_i \times y_j)$, where:

 - ξ_i The hinge loss term for instance *i*.
 - δ Smoothness parameter ensuring differentiability.
 - Smooth SVM Loss for bag x_j is defined as:

$$I(y_j, f(x_j), \delta) = \begin{cases} \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2\delta} \xi_i^2 & \text{if } \xi_i \le \delta \\ \frac{1}{N} \sum_{i=1}^{N} (\xi_i - \frac{\delta}{2}) & \text{otherwise} \end{cases}$$

• Kullback Leibler (KL) Divergence Regularization:

Acts as a regularizer applied with SVM Loss.

M - Total number of bags, N - Number of instances in bag j.

A_{ji} - Attention weight of instance i in bag j, U_{ji} - Uniform distribution value for instance i in bag j.

• Given by:

$$ext{KL Divergence} = rac{1}{M}\sum_{j=1}^{M}\sum_{i=1}^{N}A_{ji}\log\left(rac{A_{ji}}{U_{ji}}
ight)$$

• We found that promoting uniform attention within each bag helped prevent overfitting to a few negative instances.

R. Nap, M. Aburidi, and R. Marcia

EMBC 2024

Overall Workflow:

- Extract patches from WSIs.
- Learn instance-level features using Stage 1 (CCNet).
- Aggregate instance features to form a bag-level representation.
- Classify the bag-level representation to predict MSI status.

Overall Workflow:

- Extract patches from WSIs.
- Learn instance-level features using Stage 1 (CCNet).
- Aggregate instance features to form a bag-level representation.
- Classify the bag-level representation to predict MSI status.

Stage 2: MIL Classifier

R. Nap, M. Aburidi, and R. Marcia

3. Numerical results: SimCLR

Contrary to our feature extractor (CCNet), SimCLR only utilizes an instance-level projection head for training.

3. Numerical results: Datasets

Dataset:

- We utilize two image datasets obtained from The Cancer Genome Atlas (TCGA) cohort:
 - The Colorectal Cancer (CRC) dataset was utilized for comparative analysis.
 - The Stomach Adenocarcinoma (STAD) dataset was employed to externally validate our model.

3. Numerical results: Datasets

Dataset:

- We utilize two image datasets obtained from The Cancer Genome Atlas (TCGA) cohort:
 - The Colorectal Cancer (CRC) dataset was utilized for comparative analysis.
 - The Stomach Adenocarcinoma (STAD) dataset was employed to externally validate our model.

Evaluation:

• We partitioned the training data into 5-folds for cross-validation and reserved the testing split for final validation.

Dataset	Label	# of WSIs		# of Patches		# of Bags	
		Train	Test	Train	Test	Train	Test
CRC	MSI	39	26	46,704	29,335	1850	1122
	MSS	221	74	46,704	70,569	1757	2787
STAD	MSI	35	25	50,285	27,904	N/A	N/A
	MSS	150	74	50,285	90,104	N/A	N/A

3. Numerical results: Evaluation metrics

Area Under the Receiver Operating Characteristic (AUROC)

3. Numerical results: Evaluation metrics

Area Under the Receiver Operating Characteristic (AUROC)

F1 Score (F1)

True positive (TP)	False negative (FN)	$F1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{1 \times 10^{-10}}$			
		$r = 2$ \hat{r} Precision + Recall			
False positive (FP)	True negative (TN)	$\frac{TP}{P}$			
		TP + FP $TP + FN$ $TP + FN$			

3. Numerical results: Evaluation metrics

Area Under the Receiver Operating Characteristic (AUROC)

F1 Score (F1)

True positive (TP)	False negative (FN)	$F1 = 2 imes rac{ extsf{Precision} imes extsf{Recall}}{ extsf{Precision} + extsf{Recall}}$			
TP + FP $TP + FN$					

Both measures values between 0 and 1 with higher values indicating better results. 15 / 19

R. Nap, M. Aburidi, and R. Marcia

3. Numerical results: CRC Dataset

- To ensure a comprehensive evaluation, we compute the mean and standard deviation of AUROC and F1 scores across five folds.
- We compare the performance of SimCLR with our CCNet extractor.
- We evaluate the efficacy of SVM loss compared to the conventional Negative Log-Likelihood (NLL) loss.
- We employ two attention-based MIL classifiers, DeepMIL and VarMIL, and assess the performance of each model configuration.

3. Numerical results: Transfer Learning

Motivation for Transfer Learning:

- In medical imaging, labeled data scarcity limits model training.
- Transfer learning leverages pre-trained models to enhance performance on related tasks.

3. Numerical results: Transfer Learning

Motivation for Transfer Learning:

- In medical imaging, labeled data scarcity limits model training.
- Transfer learning leverages pre-trained models to enhance performance on related tasks.

Experiment:

- We explore the performance of ResNet18 pretrained on ImageNet, SimCLR pre-trained on STAD and CCNet pre-trained on STAD.
- We utilize these pre-trained extractors to generate feature vectors for input for MIL Classification.

3. Numerical results: Transfer Learning

Motivation for Transfer Learning:

- In medical imaging, labeled data scarcity limits model training.
- Transfer learning leverages pre-trained models to enhance performance on related tasks.

Experiment:

- We explore the performance of ResNet18 pretrained on ImageNet, SimCLR pre-trained on STAD and CCNet pre-trained on STAD.
- We utilize these pre-trained extractors to generate feature vectors for input for MIL Classification.

Key Findings:

• CCNet, achieved better AUROC and F1 scores than SimCLR, demonstrating effective feature extraction.

Extractor	Classifier	Loss	AUROC	F1
	DeemMII	NLL	0.58 ± 0.01	0.67 ± 0.01
PorNot18	DeepMilL	SVM	0.58 ± 0.01	0.69 ± 0.01
Residento	VorMII	NLL	0.59 ± 0.01	0.69 ± 0.01
	valivitL	SVM	0.59 ± 0.01	0.69 ± 0.01
	DeepMIL	NLL	0.81 ± 0.01	0.82 ± 0.01
SimCI P		SVM	0.82 ± 0.01	0.81 ± 0.01
SIIICLK	VorMII	NLL	0.78 ± 0.01	0.82 ± 0.01
	varivitL	SVM	0.81 ± 0.01	0.81 ± 0.01
	DeenMII	NLL	0.81 ± 0.01	0.81 ± 0.01
CCNet	Deepwill	SVM	0.83 ± 0.01	0.82 ± 0.01
cente	VorMII	NLL	0.81 ± 0.01	0.83 ± 0.01
	variviiL	SVM	0.83 ± 0.01	0.81 ± 0.01

Proposed a framework for predicting tumor Microsatellite Instability from Whole Slide Images.

- Proposed a framework for predicting tumor Microsatellite Instability from Whole Slide Images.
- Model incorporates Contrastive Learning and Multiple Instance Learning.

- Proposed a framework for predicting tumor Microsatellite Instability from Whole Slide Images.
- Model incorporates Contrastive Learning and Multiple Instance Learning.
- Source Comparisons to state-of-the-art models.

- Proposed a framework for predicting tumor Microsatellite Instability from Whole Slide Images.
- Model incorporates Contrastive Learning and Multiple Instance Learning.
- Source Comparisons to state-of-the-art models.
- Conducted evaluation on two real-world histopathology cancers datasets: Colorectal (CRC) and Stomach (STAD) cancers.

- Proposed a framework for predicting tumor Microsatellite Instability from Whole Slide Images.
- Model incorporates Contrastive Learning and Multiple Instance Learning.
- Source the second se
- Conducted evaluation on two real-world histopathology cancers datasets: Colorectal (CRC) and Stomach (STAD) cancers.
- Sesults from our proposed model improve upon existing methods.

- Proposed a framework for predicting tumor Microsatellite Instability from Whole Slide Images.
- Model incorporates Contrastive Learning and Multiple Instance Learning.
- Source the second se
- Conducted evaluation on two real-world histopathology cancers datasets: Colorectal (CRC) and Stomach (STAD) cancers.
- Sesults from our proposed model improve upon existing methods.

Thank You!