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This talk

Project goal: Predict tumor Microsatellite Instability from Whole Slide
Images using Contrastive Learning and Multiple Instance Learning.

Whole Slide Image (WSI): A high-resolution digital scan of an entire
microscope slide.
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This talk

Project goal: Predict tumor Microsatellite Instability from Whole Slide
Images using Contrastive Learning and Multiple Instance Learning.

Whole Slide Image (WSI): A high-resolution digital scan of an entire
microscope slide.

Let

o X = {x}N,: Asetof N unlabeled patches extracted from a WSI.

o Y={y jK:1: The set of K true WSI labels corresponding to
different MSI statuses in a WSI.

Whole Slide Image
(wsl)

& . X: Patches extracted from a WSI
A Y: Label of WSI
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Our approach

Challenges in Direct WSI Classification:
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Our approach

Challenges in Direct WSI Classification:
e Substantial computational resources due to high dimensionality.
e Tiny details determine the classification of the HUGE image.
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Our approach

Challenges in Direct WSI Classification:
e Substantial computational resources due to high dimensionality.
e Tiny details determine the classification of the HUGE image.

Stage 1: Contrastive Clustering Network (CCNet)

Our Approach:

@ Use Contrastive Learning to
learn robust feature
representations of patches.

@ Perform classification using
feature vectors extracted from
patches with Multiple Instance
Learning.
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1. Representation Learning with Contrastive Learning

Data Pair Creation:

Data pairs are generated for self-supervised representation learning.
These pairs are created by applying various augmentations to the

o . . S o b
original image, resulting in two transformed versions, X* and X" .
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1. Representation Learning with Contrastive Learning

Data Pair Creation:

Data pairs are generated for self-supervised representation learning.
These pairs are created by applying various augmentations to the

o . . S o b
original image, resulting in two transformed versions, X* and X" .

The following augmentations are applied:
e Random cropping

o Color jittering e Horizontal flipping

. o Normalization
o Grayscale transformation
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1. Representation Learning with Contrastive Learning

o Feature Extraction:
- Features are extracted using a shared ResNet f(-) encoder.
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1. Representation Learning with Contrastive Learning

o Feature Extraction:
- Features are extracted using a shared ResNet f(-) encoder.

- Resulting in feature vectors h? = f(X°) and h* = £(X").
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1. Representation Learning with Contrastive Learning

o Feature Extraction:
- Features are extracted using a shared ResNet f(-) encoder.

- Resulting in feature vectors h? = f(X°) and h* = £(X").

-
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1. Representation Learning with Contrastive Learning

o Projections: Features are projected into row and column spaces
using two separate MultiLayer Perceptions (MLPs) gi(-) and g¢(+).
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1. Representation Learning with Contrastive Learning

o Projections: Features are projected into row and column spaces
using two separate MultiLayer Perceptions (MLPs) gi(-) and g¢(+).
- Instance space: Z? = gj(h?), Zb = g/(h?).
- Cluster space: P? = gc(h?), P> = gc(hP).
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1. Representation Learning with Contrastive Learning

o Projections: Features are projected into row and column spaces
using two separate MultiLayer Perceptions (MLPs) gi(-) and g¢(+).
- Instance space: Z? = gj(h?), Zb = g/(h?).
- Cluster space: P? = gc(h?), P> = gc(hP).
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1. Representation Learning with Contrastive Learning

Instance-Level Loss
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1. Representation Learning with Contrastive Learning

Instance-Level Loss

i exp(s(27,22) /) 1
Z BTN exp(s(z.20)/m) + op(s(n )

where s(u,v) = is the cosine similarity.

o HUIIHVII
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1. Representation Learning with Contrastive Learning

Instance-Level Loss

i exp(s(27,22) /) 1
Z BTN exp(s(z.20)/m) + op(s(n )

where s(u,v) = HuIIHVII is the cosine similarity. 7, and 7¢ are the

instance-level and cluster-level temperature parameters (scaling factor
for cosine similarity).

Cluster-Level Loss
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1. Representation Learning with Contrastive Learning

Instance-Level Loss

lo exp(s(z7 Zis /)/7'/) )
Z g Y exp(s(z7, 27) /7)) + exp(s(27, zP) /71) (1)

where s(u,v) = HuIIHVII is the cosine similarity. 7, and 7¢ are the
instance-level and cluster-level temperature parameters (scaling factor
for cosine similarity).

Cluster-Level Loss

EC —_ i Iog exp(S(yia, yib)/TC) (2)
= S en(s(y?, y) /) + exp(s(yi, yP) /)
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1. Representation Learning with Contrastive Learning

Instance-Level Loss

lo eXp( ( Zis /)/TI) 1
Z g Y exp(s(z7, 27) /7)) + exp(s(27, zP) /71) (1)

where s(u,v) = HuIIHVII is the cosine similarity. 7, and 7¢ are the
instance-level and cluster-level temperature parameters (scaling factor
for cosine similarity).

Cluster-Level Loss

EC —_ i |Og exp(S(yia, yib)/TC) (2)
= S en(s(y?, y) /) + exp(s(yi, yP) /)

Overall Loss Function
L=L+Lc (3)
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1. Representation Learning with Contrastive Learning

Overall Workflow:
e Apply augmentations to create pairs of transformed patches.
e Use a shared ResNet encoder to extract feature vectors.
e Project feature vectors into instance and cluster spaces.
e Optimize the model to minimize the overall loss function.
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1. Representation Learning with Contrastive Learning

Overall Workflow:

e Apply augmentations to create pairs of transformed patches.
e Use a shared ResNet encoder to extract feature vectors.
e Project feature vectors into instance and cluster spaces.
e Optimize the model to minimize the overall loss function.

Stage 1: Contrastive Clustering Network (CCNet)
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2. Multiple Instance Learning

Multiple Instance Learning (MIL)
e MIL is a form of weakly supervised learning.
e Suited for scenarios with uncertainty in labeling individual data
points {xi,...,xk}.
e Labels Y € {0,1} are available at a bag level but individual labels
instances {y1, ..., yx} are unknown.
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2. Multiple Instance Learning

Multiple Instance Learning (MIL)
e MIL is a form of weakly supervised learning.
e Suited for scenarios with uncertainty in labeling individual data
points {xi,...,xk}.
e Labels Y € {0,1} are available at a bag level but individual labels
instances {y1, ..., yx} are unknown.

Context: Whole Slide Image (WSI) Analysis
e Treats each WSI as a collection of instances (patches).
o Effective due to the complexities and expansiveness of WSls.
e Focus on combined characteristics of patches.

Whole Slide Image
e k
. X: Patches extracted from a WSI
g s -/ Y: Label of WSI
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2. Multiple Instance Learning

MIL classifiers utilize a trainable attention mechanism to concentrate
on the most informative instances within each bag.
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on the most informative instances within each bag. This process
involves an MLP attention network equipped with parameters W, V,
and U to allocate a weight a, for each embedded instance z.
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2. Multiple Instance Learning

MIL classifiers utilize a trainable attention mechanism to concentrate
on the most informative instances within each bag. This process
involves an MLP attention network equipped with parameters W, V,
and U to allocate a weight a, for each embedded instance z.

o = exp{W T (tanh(Vz,) ® sigm(Uz,))}

Ty exp{WT (tanh(Vz;) © sigm(Uz)))} @

where sigm(-) is the sigmoid function, and © is the element-wise
product, N is the number of the embedded instance vectors in a bag.
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2. Multiple Instance Learning

MIL classifiers utilize a trainable attention mechanism to concentrate
on the most informative instances within each bag. This process
involves an MLP attention network equipped with parameters W, V,
and U to allocate a weight a, for each embedded instance z.

o = exp{W T (tanh(Vz,) ® sigm(Uz,))}

Ty exp{WT (tanh(Vz;) © sigm(Uz)))} @

where sigm(-) is the sigmoid function, and © is the element-wise
product, N is the number of the embedded instance vectors in a bag.

1 N
n = — Z akZy (5)
N k=1

The overall bag representation is computed by the weighted mean p of
these instance embeddings as shown above.
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2. Multiple Instance Learning

MIL Loss + Regularizer:
e Support Vector Machine (SVM) Loss:
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2. Multiple Instance Learning

MIL Loss + Regularizer:

e Support Vector Machine (SVM) Loss:

e For each bag x; with label y;, define {; = max(0,1 — ¢; x y;), where:
@ (; - The predicted logit for instance i within the bag.
@ ¢; - The hinge loss term for instance i.
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2. Multiple Instance Learning

MIL Loss + Regularizer:

e Support Vector Machine (SVM) Loss:

e For each bag x; with label y;, define {; = max(0,1 — ¢; x y;), where:
@ (; - The predicted logit for instance i within the bag.
@ ¢; - The hinge loss term for instance i.
@ § - Smoothness parameter ensuring differentiability.

e Smooth SVM Loss for bag x; is defined as:

LYWV Le ifg <6
LN (& —2) otherwise

/(yja f(Xj)v(S) = {
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MIL Loss + Regularizer:

e Support Vector Machine (SVM) Loss:

e For each bag x; with label y;, define {; = max(0,1 — ¢; x y;), where:
@ (; - The predicted logit for instance i within the bag.
@ ¢; - The hinge loss term for instance i.
@ § - Smoothness parameter ensuring differentiability.

e Smooth SVM Loss for bag x; is defined as:

LYWV Le ifg <6
LN (& —2) otherwise

e Kullback Leibler (KL) Divergence Regularization:
e Acts as a regularizer applied with SVM Loss.

@ M - Total number of bags, N - Number of instances in bag j.
@ Aj; - Attention weight of instance i in bag j, Uj; - Uniform distribution value for instance i in bag j.
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2. Multiple Instance Learning

MIL Loss + Regularizer:

e Support Vector Machine (SVM) Loss:

e For each bag x; with label y;, define {; = max(0,1 — ¢; x y;), where:

@ (; - The predicted logit for instance i within the bag.
@ ¢; - The hinge loss term for instance i.
@ § - Smoothness parameter ensuring differentiability.

e Smooth SVM Loss for bag x; is defined as:

lZf\ll 2567 if & <6

I(y;, f(x),6) = {Z, (& — 7) otherwise

e Kullback Leibler (KL) Divergence Regularization:
e Acts as a regularizer applied with SVM Loss.

@ M - Total number of bags, N - Number of instances in bag j.
@ Aj; - Attention weight of instance i in bag j, Uj; - Uniform distribution value for instance i in bag j.

e Given by:

KL Divergence = Z Z Aji log ( )

Jll].
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2. Multiple Instance Learning

MIL Loss + Regularizer:

e Support Vector Machine (SVM) Loss:

e For each bag x; with label y;, define {; = max(0,1 — ¢; x y;), where:

@ (; - The predicted logit for instance i within the bag.
@ ¢; - The hinge loss term for instance i.
@ § - Smoothness parameter ensuring differentiability.

e Smooth SVM Loss for bag x; is defined as:

lZf\ll 2567 if & <6

I(y;, f(x),6) = {Z, (& — 7) otherwise

e Kullback Leibler (KL) Divergence Regularization:
e Acts as a regularizer applied with SVM Loss.

@ M - Total number of bags, N - Number of instances in bag j.
@ Aj; - Attention weight of instance i in bag j, Uj; - Uniform distribution value for instance i in bag j.

e Given by:
KL Divergence = Z ZAJ, log ( )
J 1 i=1

e We found that promoting uniform attention within each bag helped
prevent overfitting to a few negative instances.
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2. Multiple Instance Learning

Overall Workflow:
e Extract patches from WSis.
e Learn instance-level features using Stage 1 (CCNet).
e Aggregate instance features to form a bag-level representation.
e Classify the bag-level representation to predict MSI status.
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2. Multiple Instance Learning

Overall Workflow:

e Extract patches from WSis.

e Learn instance-level features using Stage 1 (CCNet).

e Aggregate instance features to form a bag-level representation.
e Classify the bag-level representation to predict MSI status.
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3. Numerical results: SimCLR

Contrary to our feature extractor (CCNet), SimCLR only utilizes an
instance-level projection head for training.

Maximize agreement

Zj < > ZJ
g(.)I g(.)I

hj «— Representation ——» hj
f(.) f(.)
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3. Numerical results: Datasets

Dataset:

e We utilize two image datasets obtained from The Cancer Genome
Atlas (TCGA) cohort:
e The Colorectal Cancer (CRC) dataset was utilized for
comparative analysis.
e The Stomach Adenocarcinoma (STAD) dataset was employed to
externally validate our model.
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3. Numerical results: Datasets

Dataset:
e We utilize two image datasets obtained from The Cancer Genome
Atlas (TCGA) cohort:
e The Colorectal Cancer (CRC) dataset was utilized for
comparative analysis.
e The Stomach Adenocarcinoma (STAD) dataset was employed to
externally validate our model.

Evaluation:

e We partitioned the training data into 5-folds for cross-validation
and reserved the testing split for final validation.

Dataset Label # of WSIs # of Patches # of Bags
Train Test Train Test Train  Test

CRC MSI 39 26 46,704 29,335 1850 1122

MSS 221 74 46,704 70,569 1757 2787
STAD MSI 35 25 50,285 27,904 N/A N/A
MSS 150 74 50,285 90,104 N/A N/A
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3. Numerical results: Evaluation metrics

Area Under the Receiver Operating Characteristic (AUROC)
cllaaesr;iet?e‘r ROC curve
1.0e = 1
\,/' AUROC = 5 Z(TPR, + TPR;_l) X (FPR, — FPR,'_l)
' " 1P FP

_ FPR=—
TPR= T Fn TN + FP

True positive rate

False positive rate
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3. Numerical results: Evaluation metrics

Area Under the Receiver Operating Characteristic (AUROC)
cllaaesr;iet?e‘r ROC curve
1.0e = 1
\,/' AUROC = 5 Z(TPR, + TPR;_l) X (FPR, — FPR,'_l)
. TP FP
S FPR= ———
~ TP+FN TN + FP

True positive rate

TPR

False positive rate

F1 Score (F1)

Precision x Recall
Precision + Recall

False positive (FP) | True negative (TN) H — —
Precision TP 1 FP Recall TP L EN

True positive (TP) | False negative (FN) F 1 —
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3. Numerical results: Evaluation metrics

Area Under the Receiver Operating Characteristic (AUROC)

Perfect
classifier ROC curve
1.0e

X~ AUROC = % > (TPR; +TPR;_1) x (FPR; — FPR;_1)

i

True positive rate

TP FP
S — FPR= ———
TPR= T Fn TN + FP
False positive rate
F1 Score (F1)
True positive (TP) | False negative (FN) Fl — PreCiSion X Reca”
Precision + Recall
. . TP TP
False positive (FP) | True negative (TN) PreCiSion — Reca" —
TP+ FP TP+ FN

Both measures values between 0 and 1 with higher values indicating
better results.
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3. Numerical results: CRC Dataset

@ To ensure a comprehensive evaluation,
we compute the mean and standard
deviation of AUROC and F1 scores e
across five folds. = ol g g
@ We compare the performance of SimCLR
with our CCNet extractor.

@ We evaluate the efficacy of SVM loss
compared to the conventional Negative
Log-Likelihood (NLL) loss.

@ We employ two attention-based MIL

classifiers, DeepMIL and VarMIL, and ~  “ wiw
assess the performance of each model
configuration.
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3. Numerical results: Transfer Learning

Motivation for Transfer Learning:
@ In medical imaging, labeled data scarcity limits model training.
@ Transfer learning leverages pre-trained models to enhance performance on related tasks.
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Motivation for Transfer Learning:
@ In medical imaging, labeled data scarcity limits model training.
@ Transfer learning leverages pre-trained models to enhance performance on related tasks.
Experiment:
@ We explore the performance of ResNet18 pretrained on ImageNet, SimCLR pre-trained on
STAD and CCNet pre-trained on STAD.
@ We utilize these pre-trained extractors to generate feature vectors for input for MIL
Classification.
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3. Numerical results: Transfer Learning

Motivation for Transfer Learning:
@ In medical imaging, labeled data scarcity limits model training.
@ Transfer learning leverages pre-trained models to enhance performance on related tasks.
Experiment:
@ We explore the performance of ResNet18 pretrained on ImageNet, SimCLR pre-trained on
STAD and CCNet pre-trained on STAD.
@ We utilize these pre-trained extractors to generate feature vectors for input for MIL
Classification.
Key Findings:
@ CCNet, achieved better AUROC and F1 scores than SimCLR, demonstrating effective
feature extraction.

Extractor Classifier Loss AUROC F1
NLL 058 + 001 067 % 0.01
ResNet 8 DeepMIL  qyni 058 + 0.01  0.69 + 0.01
vamiL  NLL 059 £ 00T 069 % 001
SVM 059 + 001  0.69 = 0.01
NLL 081 £ 001 082 £ 0.01
SimCLR DeepMIL  qyn 082 + 001 081 + 0.01
vami  NLL 078 £ 00T 082 %001
SVM 081 + 001 0.1 = 0.01
NLL 081 £ 001 081 £ 0.01
CONet DeepMIL  gymM 083 + 001 0.82 + 001
varmiL  NLL 08T £ 001 083 £ 0.0

SVM  0.83 £0.01 0.81 +0.01
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@ Proposed a framework for predicting tumor Microsatellite
Instability from Whole Slide Images.
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Proposed a framework for predicting tumor Microsatellite
Instability from Whole Slide Images.

Model incorporates Contrastive Learning and Multiple Instance
Learning.

Conducted comparisons to state-of-the-art models.

Conducted evaluation on two real-world histopathology cancers
datasets: Colorectal (CRC) and Stomach (STAD) cancers.
Results from our proposed model improve upon existing methods.
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Thank You!
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